知源书城 -Spark快速大数据分析
本书资料更新时间:2025-01-20 18:12:48

Spark快速大数据分析 下载 pdf 百度网盘 epub 免费 2025 电子书 mobi 在线

Spark快速大数据分析精美图片
》Spark快速大数据分析电子书籍版权问题 请点击这里查看《

Spark快速大数据分析书籍详细信息

  • ISBN:9787115403094
  • 作者:暂无作者
  • 出版社:暂无出版社
  • 出版时间:2020-08
  • 页数:232
  • 价格:57.20
  • 纸张:纯质纸
  • 装帧:精装
  • 开本:16开
  • 语言:未知
  • 丛书:暂无丛书
  • TAG:暂无
  • 豆瓣评分:暂无豆瓣评分
  • 豆瓣短评:点击查看
  • 豆瓣讨论:点击查看
  • 豆瓣目录:点击查看
  • 读书笔记:点击查看
  • 原文摘录:点击查看
  • 更新时间:2025-01-20 18:12:48

内容简介:

暂无相关简介,正在全力查找中!


书籍目录:

目录

推荐序 xi

译者序 xiv

序 xvi

前言 xvii

第1章 Spark数据分析导论 1

1.1 Spark是什么 1

1.2 一个大一统的软件栈 2

1.2.1 Spark Core 2

1.2.2 Spark SQL 3

1.2.3 Spark Streaming 3

1.2.4 MLlib 3

1.2.5 GraphX 3

1.2.6 集群管理器 4

1.3 Spark的用户和用途 4

1.3.1 数据科学任务 4

1.3.2 数据处理应用 5

1.4 Spark简史 5

1.5 Spark的版本和发布 6

1.6 Spark的存储层次 6

第2章 Spark下载与入门 7

2.1 下载Spark 7

2.2 Spark中Python和Scala的shell 9

2.3 Spark 核心概念简介 12

2.4 独立应用 14

2.4.1 初始化SparkContext 15

2.4.2 构建独立应用 16

2.5 总结 19

第3章 RDD编程 21

3.1 RDD基础 21

3.2 创建RDD 23

3.3 RDD操作 24

3.3.1 转化操作 24

3.3.2 行动操作 26

3.3.3 惰性求值 27

3.4 向Spark传递函数 27

3.4.1 Python 27

3.4.2 Scala 28

3.4.3 Java 29

3.5 常见的转化操作和行动操作 30

3.5.1 基本RDD 30

3.5.2 在不同RDD类型间转换 37

3.6 持久化( 缓存) 39

3.7 总结 40

第4章 键值对操作 41

4.1 动机 41

4.2 创建Pair RDD 42

4.3 Pair RDD的转化操作 42

4.3.1 聚合操作 45

4.3.2 数据分组 49

4.3.3 连接 50

4.3.4 数据排序 51

4.4 Pair RDD的行动操作 52

4.5 数据分区(进阶) 52

4.5.1 获取RDD的分区方式 55

4.5.2 从分区中获益的操作 56

4.5.3 影响分区方式的操作 57

4.5.4 示例:PageRank 57

4.5.5 自定义分区方式 59

4.6 总结 61

第5章 数据读取与保存 63

5.1 动机 63

5.2 文件格式 64

5.2.1 文本文件 64

5.2.2 JSON 66

5.2.3 逗号分隔值与制表符分隔值 68

5.2.4 SequenceFile 71

5.2.5 对象文件 73

5.2.6 Hadoop输入输出格式 73

5.2.7 文件压缩 77

5.3 文件系统 78

5.3.1 本地/“常规”文件系统 78

5.3.2 Amazon S3 78

5.3.3 HDFS 79

5.4 Spark SQL中的结构化数据 79

5.4.1 Apache Hive 80

5.4.2 JSON 80

5.5 数据库 81

5.5.1 Java数据库连接 81

5.5.2 Cassandra 82

5.5.3 HBase 84

5.5.4 Elasticsearch 85

5.6 总结 86

第6章 Spark编程进阶 87

6.1 简介 87

6.2 累加器 88

6.2.1 累加器与容错性 90

6.2.2 自定义累加器 91

6.3 广播变量 91

6.4 基于分区进行操作 94

6.5 与外部程序间的管道 96

6.6 数值RDD 的操作 99

6.7 总结 100

第7章 在集群上运行Spark 101

7.1 简介 101

7.2 Spark运行时架构 101

7.2.1 驱动器节点 102

7.2.2 执行器节点 103

7.2.3 集群管理器 103

7.2.4 启动一个程序 104

7.2.5 小结 104

7.3 使用spark-submit 部署应用 105

7.4 打包代码与依赖 107

7.4.1 使用Maven构建的用Java编写的Spark应用 108

7.4.2 使用sbt构建的用Scala编写的Spark应用 109

7.4.3 依赖冲突 111

7.5 Spark应用内与应用间调度 111

7.6 集群管理器 112

7.6.1 独立集群管理器 112

7.6.2 Hadoop YARN 115

7.6.3 Apache Mesos 116

7.6.4 Amazon EC2 117

7.7 选择合适的集群管理器 120

7.8 总结 121

第8章 Spark调优与调试 123

8.1 使用SparkConf配置Spark 123

8.2 Spark执行的组成部分:作业、任务和步骤 127

8.3 查找信息 131

8.3.1 Spark网页用户界面 131

8.3.2 驱动器进程和执行器进程的日志 134

8.4 关键性能考量 135

8.4.1 并行度 135

8.4.2 序列化格式 136

8.4.3 内存管理 137

8.4.4 硬件供给 138

8.5 总结 139

第9章 Spark SQL 141

9.1 连接Spark SQL 142

9.2 在应用中使用Spark SQL 144

9.2.1 初始化Spark SQL 144

9.2.2 基本查询示例 145

9.2.3 SchemaRDD 146

9.2.4 缓存 148

9.3 读取和存储数据 149

9.3.1 Apache Hive 149

9.3.2 Parquet 150

9.3.3 JSON 150

9.3.4 基于RDD 152

9.4 JDBC/ODBC服务器 153

9.4.1 使用Beeline 155

9.4.2 长生命周期的表与查询 156

9.5 用户自定义函数 156

9.5.1 Spark SQL UDF 156

9.5.2 Hive UDF 157

9.6 Spark SQL性能 158

9.7 总结 159

第10章 Spark Streaming 161

10.1 一个简单的例子 162

10.2 架构与抽象 164

10.3 转化操作 167

10.3.1 无状态转化操作 167

10.3.2 有状态转化操作 169

10.4 输出操作 173

10.5 输入源 175

10.5.1 核心数据源 175

10.5.2 附加数据源 176

10.5.3 多数据源与集群规模 179

10.6 24/7不间断运行 180

10.6.1 检查点机制 180

10.6.2 驱动器程序容错 181

10.6.3 工作节点容错 182

10.6.4 接收器容错 182

10.6.5 处理保证 183

10.7 Streaming用户界面 183

10.8 性能考量 184

10.8.1 批次和窗口大小 184

10.8.2 并行度 184

10.8.3 垃圾回收和内存使用 185

10.9 总结 185

第11章 基于MLlib的机器学习 187

11.1 概述 187

11.2 系统要求 188

11.3 机器学习基础 189

11.4 数据类型 192

11.5 算法 194

11.5.1 特征提取 194

11.5.2 统计 196

11.5.3 分类与回归 197

11.5.4 聚类 202

11.5.5 协同过滤与推荐 203

11.5.6 降维 204

11.5.7 模型评估 206

11.6 一些提示与性能考量 206

11.6.1 准备特征 206

11.6.2 配置算法 207

11.6.3 缓存RDD以重复使用 207

11.6.4 识别稀疏程度 207

11.6.5 并行度 207

11.7 流水线API 208

11.8 总结 209

作者简介 210

封面介绍 210


作者介绍:

Holden Karau是Databricks的软件开发工程师,活跃于开源社区。她还著有《Spark快速数据处理》。

Andy Konwinski是Databricks联合创始人,Apache Spark项目技术专家,还是Apache Mesos项目的联合发起人。

Patrick Wendell是Databricks联合创始人,也是Apache Spark项目技术专家。他还负责维护Spark核心引擎的几个子系统。

Matei Zaharia是Databricks的CTO,同时也是Apache Spark项目发起人以及Apache基金会副主席。


出版社信息:

暂无出版社相关信息,正在全力查找中!


书籍摘录:

暂无相关书籍摘录,正在全力查找中!


在线阅读/听书/购买/PDF下载地址:


原文赏析:

暂无原文赏析,正在全力查找中!


其它内容:

暂无其它内容!


书籍真实打分

  • 故事情节:8分

  • 人物塑造:9分

  • 主题深度:4分

  • 文字风格:7分

  • 语言运用:3分

  • 文笔流畅:3分

  • 思想传递:7分

  • 知识深度:3分

  • 知识广度:7分

  • 实用性:8分

  • 章节划分:8分

  • 结构布局:6分

  • 新颖与独特:8分

  • 情感共鸣:3分

  • 引人入胜:8分

  • 现实相关:4分

  • 沉浸感:9分

  • 事实准确性:5分

  • 文化贡献:7分


网站评分

  • 书籍多样性:5分

  • 书籍信息完全性:5分

  • 网站更新速度:9分

  • 使用便利性:5分

  • 书籍清晰度:4分

  • 书籍格式兼容性:6分

  • 是否包含广告:5分

  • 加载速度:4分

  • 安全性:7分

  • 稳定性:7分

  • 搜索功能:7分

  • 下载便捷性:9分


下载点评

  • 简单(183+)
  • 一般般(96+)
  • 值得下载(284+)
  • 无水印(283+)
  • 全格式(70+)
  • 超值(393+)
  • 二星好评(438+)
  • 快捷(86+)
  • 博大精深(295+)
  • azw3(256+)

下载评价

  • 网友 曾***文: ( 2025-01-14 19:35:35 )

    五星好评哦

  • 网友 邱***洋: ( 2024-12-23 21:38:52 )

    不错,支持的格式很多

  • 网友 常***翠: ( 2024-12-30 01:00:33 )

    哈哈哈哈哈哈

  • 网友 孙***美: ( 2024-12-24 17:01:01 )

    加油!支持一下!不错,好用。大家可以去试一下哦

  • 网友 寿***芳: ( 2024-12-31 20:35:38 )

    可以在线转化哦

  • 网友 曹***雯: ( 2025-01-07 10:01:10 )

    为什么许多书都找不到?

  • 网友 訾***晴: ( 2025-01-09 17:51:55 )

    挺好的,书籍丰富

  • 网友 辛***玮: ( 2025-01-13 01:13:21 )

    页面不错 整体风格喜欢

  • 网友 相***儿: ( 2024-12-23 06:01:03 )

    你要的这里都能找到哦!!!

  • 网友 薛***玉: ( 2025-01-16 17:30:26 )

    就是我想要的!!!

  • 网友 习***蓉: ( 2025-01-11 11:55:53 )

    品相完美

  • 网友 汪***豪: ( 2024-12-26 05:55:25 )

    太棒了,我想要azw3的都有呀!!!

  • 网友 温***欣: ( 2025-01-20 00:42:54 )

    可以可以可以

  • 网友 冯***丽: ( 2025-01-09 16:40:18 )

    卡的不行啊

  • 网友 养***秋: ( 2025-01-08 00:31:32 )

    我是新来的考古学家


随机推荐