PyTorch深度学习 下载 pdf 百度网盘 epub 免费 2025 电子书 mobi 在线
PyTorch深度学习电子书下载地址
寄语:
使用PyTorch开发神经网络的实用指南 深度学习框架PyTorch入门教程 涵盖机器学习 神经网络 计算机视觉应用等知识 提供本书彩图和源代码下载
内容简介:
PyTorch是Facebook于2017年初在机器学习和科学计算工具Torch的基础上,针对Python语言发布的一个全新的机器学习工具包,一经推出便受到了业界的广泛关注和讨论,目前已经成为机器学习从业人员的研发工具。
《PyTorch深度学习》是使用PyTorch构建神经网络模型的实用指南,内容分为9章,包括PyTorch与深度学习的基础知识、神经网络的构成、神经网络的知识、机器学习基础知识、深度学习在计算机视觉中的应用、深度学习在序列数据和文本中的应用、生成网络、现代网络架构,以及PyTorch与深度学习的未来走向。
《PyTorch深度学习》适合对深度学习领域感兴趣且希望一探PyTorch的业内人员阅读;具备其他深度学习框架使用经验的读者,也可以通过本书掌握PyTorch的用法。
书籍目录:
第 1章 PyTorch与深度学习1
1.1 人工智能 1
1.2 机器学习 3
1.3 深度学习 4
1.3.1 深度学习的应用 4
1.3.2 深度学习的浮夸宣传 6
1.3.3 深度学习发展史 6
1.3.4 为何是现在 7
1.3.5 硬件可用性 7
1.3.6 数据和算法 8
1.3.7 深度学习框架 9
1.4 小结 10
第 2章 神经网络的构成 11
2.1 安装PyTorch 11
2.2 实现第 一个神经网络 12
2.2.1 准备数据 13
2.2.2 为神经网络创建数据 20
2.2.3 加载数据 24
2.3 小结 25
第3章 深入了解神经网络 26
3.1 详解神经网络的组成部分 26
3.1.1 层—神经网络的基本组成 27
3.1.2 非线性激活函数 29
3.1.3 PyTorch中的非线性激活函数 32
3.1.4 使用深度学习进行图像分类 36
3.2 小结 46
第4章 机器学习基础 47
4.1 三类机器学习问题 47
4.1.1 有监督学习 48
4.1.2 无监督学习 48
4.1.3 强化学习 48
4.2 机器学习术语 49
4.3 评估机器学习模型 50
4.4 数据预处理与特征工程 54
4.4.1 向量化 54
4.4.2 值归一化 54
4.4.3 处理缺失值 55
4.4.4 特征工程 55
4.5 过拟合与欠拟合 56
4.5.1 获取更多数据 56
4.5.2 缩小网络规模 57
4.5.3 应用权重正则化 58
4.5.4 应用dropout 58
4.5.5 欠拟合 60
4.6 机器学习项目的工作流 60
4.6.1 问题定义与数据集创建 60
4.6.2 成功的衡量标准 61
4.6.3 评估协议 61
4.6.4 准备数据 62
4.6.5 模型基线 62
4.6.6 大到过拟合的模型 63
4.6.7 应用正则化 63
4.6.8 学习率选择策略 64
4.7 小结 65
第5章 深度学习之计算机视觉 66
5.1 神经网络简介 66
5.2 从零开始构建CNN模型 69
5.2.1 Conv2d 71
5.2.2 池化 74
5.2.3 非线性激活—ReLU 75
5.2.4 视图 76
5.2.5 训练模型 77
5.2.6 狗猫分类问题—从零开始构建CNN 80
5.2.7 利用迁移学习对狗猫分类 82
5.3 创建和探索VGG16模型 84
5.3.1 冻结层 85
5.3.2 微调VGG16模型 85
5.3.3 训练VGG16模型 86
5.4 计算预卷积特征 88
5.5 理解CNN模型如何学习 91
5.6 CNN层的可视化权重 94
5.7 小结 95
第6章 序列数据和文本的深度学习 96
6.1 使用文本数据 96
6.1.1 分词 98
6.1.2 向量化 100
6.2 通过构建情感分类器训练词向量 104
6.2.1 下载IMDB数据并对文本分词 104
6.2.2 构建词表 106
6.2.3 生成向量的批数据 107
6.2.4 使用词向量创建网络模型 108
6.2.5 训练模型 109
6.3 使用预训练的词向量 110
6.3.1 下载词向量 111
6.3.2 在模型中加载词向量 112
6.3.3 冻结embedding层权重 113
6.4 递归神经网络(RNN) 113
6.5 LSTM 117
6.5.1 长期依赖 117
6.5.2 LSTM网络 117
6.6 基于序列数据的卷积网络 123
6.7 小结 125
第7章 生成网络 126
7.1 神经风格迁移 126
7.1.1 加载数据 129
7.1.2 创建VGG模型 130
7.1.3 内容损失 131
7.1.4 风格损失 131
7.1.5 提取损失 133
7.1.6 为网络层创建损失函数 136
7.1.7 创建优化器 136
7.1.8 训练 137
7.2 生成对抗网络(GAN) 138
7.3 深度卷机生成对抗网络 139
7.3.1 定义生成网络 140
7.3.2 定义判别网络 144
7.3.3 定义损失函数和优化器 145
7.3.4 训练判别网络 145
7.3.5 训练生成网络 146
7.3.6 训练整个网络 147
7.3.7 检验生成的图片 148
7.4 语言建模 150
7.4.1 准备数据 151
7.4.2 生成批数据 152
7.4.3 定义基于LSTM的模型 153
7.4.4 定义训练和评估函数 155
7.4.5 训练模型 157
7.5 小结 159
第8章 现代网络架构 160
8.1 现代网络架构 160
8.1.1 ResNet 160
8.1.2 Inception 168
8.2 稠密连接卷积网络(DenseNet) 175
8.2.1 DenseBlock 175
8.2.2 DenseLayer 176
8.3 模型集成 180
8.3.1 创建模型 181
8.3.2 提取图片特征 182
8.3.3 创建自定义数据集和数据加载器 183
8.3.4 创建集成模型 184
8.3.5 训练和验证模型 185
8.4 encoder-decoder架构 186
8.4.1 编码器 188
8.4.2 解码器 188
8.5 小结 188
第9章 未来走向 189
9.1 未来走向 189
9.2 回顾 189
9.3 有趣的创意应用 190
9.3.1 对象检测 190
9.3.2 图像分割 191
9.3.3 PyTorch中的OpenNMT 192
9.3.4 Allen NLP 192
9.3.5 fast.ai—神经网络不再神秘 192
9.3.6 Open Neural Network Exchange 192
9.4 如何跟上前沿 193
9.5 小结 193
作者介绍:
Vishnu Subramanian在领导、设计和实施大数据分析项目(人工智能、机器学习和深度学习)方面富有经验。擅长机器学习、深度学习、分布式机器学习和可视化等。在零售、金融和旅行等行业颇具经验,还善于理解和协调企业、人工智能和工程团队之间的关系。
出版社信息:
暂无出版社相关信息,正在全力查找中!
书籍摘录:
暂无相关书籍摘录,正在全力查找中!
在线阅读/听书/购买/PDF下载地址:
原文赏析:
暂无原文赏析,正在全力查找中!
其它内容:
编辑推荐
深度学习为世界上的智能系统(比如Google Voice、Siri和Alexa)提供了动力。随着硬件(如GPU)和软件框架(如PyTorch、Keras、TensorFlow和CNTK)的进步以及大数据的可用性,人们在文本、视觉和分析等领域更容易实施相应问题的解决方案。
本书对当今前沿的深度学习库PyTorch进行了讲解。凭借其易学习性、高效性以及与Python开发的天然亲近性,PyTorch获得了深度学习研究人员以及数据科学家们的关注。本书从PyTorch的安装讲起,然后介绍了为现代深度学习提供驱动力的多个基础模块,还介绍了使用CNN、RNN、LSTM以及其他网络模型解决问题的方法。本书对多个先进的深度学习架构的概念(比如ResNet、DenseNet、Inception和Seq2Seq)进行了阐述,但没有深挖其背后的数学细节。与GPU计算相关的知识、使用PyTorch训练模型的方法,以及用来生成文本和图像的复杂神经网络(如生成网络),也在本书中有所涵盖。
学完本书后,读者可以使用PyTorch轻松开发深度学习应用程序。
本书内容:
在GPU加速的张量计算中使用PyTorch;
为图像自行创建数据集和数据装载器,然后使用torchvision和torchtext测试模型;
使用PyTorch来实现CNN架构,从而构建图像分类器;
使用RNN、LSTM和GRU开发能进行文本分类和语言建模的系统;
学习的CCN架构(比如ResNet、Inception、DenseNet等),并将其应用在迁移学习中;
学习如何混合多个模型,从而生成一个强大的集成模型;
使用GAN生成新图像,并使用风格迁移生成艺术图像。
书籍介绍
深度学习为世界上的智能系统(比如Google Voice、Siri和Alexa)提供了动力。随着硬件(如GPU)和软件框架(如PyTorch、Keras、TensorFlow和CNTK)的进步以及大数据的可用性,人们在文本、视觉和分析等领域更容易实施相应问题的解决方案。
本书对当今前沿的深度学习库PyTorch进行了讲解。凭借其易学习性、高效性以及与Python开发的天然亲近性,PyTorch获得了深度学习研究人员以及数据科学家们的关注。本书从PyTorch的安装讲起,然后介绍了为现代深度学习提供驱动力的多个基础模块,还介绍了使用CNN、RNN、LSTM以及其他网络模型解决问题的方法。本书对多个先进的深度学习架构的概念(比如ResNet、DenseNet、Inception和Seq2Seq)进行了阐述,但没有深挖其背后的数学细节。与GPU计算相关的知识、使用PyTorch训练模型的方法,以及用来生成文本和图像的复杂神经网络(如生成网络),也在本书中有所涵盖。
学完本书后,读者可以使用PyTorch轻松开发深度学习应用程序。
网站评分
书籍多样性:9分
书籍信息完全性:7分
网站更新速度:3分
使用便利性:3分
书籍清晰度:3分
书籍格式兼容性:7分
是否包含广告:7分
加载速度:5分
安全性:5分
稳定性:4分
搜索功能:3分
下载便捷性:8分
下载点评
- 好评(272+)
- 差评(517+)
- 体验还行(333+)
- 无缺页(678+)
- txt(560+)
- 小说多(121+)
- 强烈推荐(559+)
- 种类多(202+)
- 可以购买(256+)
- 体验满分(216+)
- pdf(418+)
下载评价
- 网友 沈***松: ( 2024-12-20 20:15:42 )
挺好的,不错
- 网友 谢***灵: ( 2025-01-11 09:19:36 )
推荐,啥格式都有
- 网友 屠***好: ( 2025-01-13 03:04:08 )
还行吧。
- 网友 石***致: ( 2025-01-05 11:08:15 )
挺实用的,给个赞!希望越来越好,一直支持。
- 网友 曾***玉: ( 2025-01-04 13:06:01 )
直接选择epub/azw3/mobi就可以了,然后导入微信读书,体验百分百!!!
- 网友 焦***山: ( 2025-01-04 16:15:51 )
不错。。。。。
- 网友 索***宸: ( 2025-01-16 22:44:37 )
书的质量很好。资源多
- 网友 田***珊: ( 2024-12-23 21:02:50 )
可以就是有些书搜不到
- 网友 谭***然: ( 2025-01-17 19:22:34 )
如果不要钱就好了
- 网友 后***之: ( 2024-12-23 01:31:22 )
强烈推荐!无论下载速度还是书籍内容都没话说 真的很良心!
- 网友 潘***丽: ( 2025-01-01 21:27:43 )
这里能在线转化,直接选择一款就可以了,用他这个转很方便的
- 网友 融***华: ( 2024-12-27 23:46:00 )
下载速度还可以
- 网友 权***颜: ( 2025-01-20 01:34:46 )
下载地址、格式选择、下载方式都还挺多的
- 小学数学计算能手1年级(人教版 上) 下载 pdf 百度网盘 epub 免费 2025 电子书 mobi 在线
- 世界热点国家地图--土耳其地图挂图 折叠图(折挂两用 中外文对照 大字易读 865mm*1170mm) 下载 pdf 百度网盘 epub 免费 2025 电子书 mobi 在线
- 中公版·二级建造师2019教材:建设工程施工管理历年真题详解与考前押题试卷 下载 pdf 百度网盘 epub 免费 2025 电子书 mobi 在线
- 日本时尚杂志 QUOTATION FASHION ISSUE 日本日文原版 时尚趋势杂志 年订4期 下载 pdf 百度网盘 epub 免费 2025 电子书 mobi 在线
- 亚当夏娃的秘密日记 下载 pdf 百度网盘 epub 免费 2025 电子书 mobi 在线
- 财务管理学习题与案例 下载 pdf 百度网盘 epub 免费 2025 电子书 mobi 在线
- ***抗癌中草药-第3版( 货号:712233999) 下载 pdf 百度网盘 epub 免费 2025 电子书 mobi 在线
- 像我这样可爱的无赖 小说作品集 下载 pdf 百度网盘 epub 免费 2025 电子书 mobi 在线
- 2017室内设计模型库奢华主义家居 福建科学技术出版社 下载 pdf 百度网盘 epub 免费 2025 电子书 mobi 在线
- 液压与气压传动(浙江省普通高校十三五新形态教材) 下载 pdf 百度网盘 epub 免费 2025 电子书 mobi 在线
书籍真实打分
故事情节:3分
人物塑造:7分
主题深度:7分
文字风格:3分
语言运用:3分
文笔流畅:9分
思想传递:9分
知识深度:6分
知识广度:8分
实用性:8分
章节划分:5分
结构布局:3分
新颖与独特:8分
情感共鸣:3分
引人入胜:3分
现实相关:8分
沉浸感:9分
事实准确性:7分
文化贡献:7分